organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,4-Diiodo-6-{[4-(morpholin-4-yl)phenyl]iminomethyl}phenol

K. Manvizhi,^a G. Chakkaravarthi,^b* G. Anbalagan^c and G. Rajagopal^d*

^aDepartment of Chemistry, Anand Institute of Higher Technology, Kazhipattur, Chennai 603 103, India, ^bDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, ^cDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and ^dDepartment of Chemistry, Government Arts College, Melur 625 106, India

Correspondence e-mail: chakkaravarthi_2005@yahoo.com, rajagopal18@yahoo.com

Received 18 August 2011; accepted 22 August 2011

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.007 Å; R factor = 0.056; wR factor = 0.113; data-to-parameter ratio = 36.8.

In the title compound, $C_{17}H_{16}I_2N_2O_2$, the two aromatic rings are almost coplanar [dihedral angle 2.57 (15)°]. The morpholine ring adopts a chair conformation. The molecular structure is stabilized by an O-H···N hydrogen bond and the crystal packing exhibits weak intermolecular C-H···O and π - π [centroid-to-centroid distances 3.663 (3)-4.073 (3) Å] interactions.

Related literature

For the biological activity of morpholine derivatives, see: Lan *et al.* (2010); Raparti *et al.*(2009). For a related structure, see: Yang *et al.* (2011). For the definition of puckering parameters, see: Cremer & Pople (1975).

Experimental

Crystal data C₁₇H₁₆I₂N₂O₂

 $M_r = 534.12$

Monoclinic, $C2/c$	Z = 8
a = 26.4133 (16) Å	Mo $K\alpha$ radiation
b = 7.6598 (4) Å	$\mu = 3.46 \text{ mm}^{-1}$
c = 18.0332 (11) Å	T = 295 K
$\beta = 91.417 \ (2)^{\circ}$	$0.26 \times 0.20 \times 0.20$ mm
V = 3647.4 (4) Å ³	
Data collection	
Bruker Kappa APEXII	17839 measured reflections
diffractometer	7647 independent reflections
A becomption compositions multi econ	4955 nofloations with L 2 2(1)
Absorption correction: multi-scan	4855 reflections with $I > 20(I)$

Absorption correction: multi-scan	4855 reflections with
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.023$
$T_{\min} = 0.467, \ T_{\max} = 0.545$	

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.056 & 208 \text{ parameters} \\ wR(F^2) = 0.113 & H\text{-atom parameters constrained} \\ S = 1.16 & \Delta\rho_{\max} = 1.22 \text{ e } \text{\AA}^{-3} \\ 7647 \text{ reflections} & \Delta\rho_{\min} = -1.72 \text{ e } \text{\AA}^{-3} \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O2-H2\cdots N1$	0.82	1.82	2.548 (5)	146
$C6-H6\cdotsO1^{1}$	0.93	2.50	3.413 (5)	166

Symmetry code: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

The authors acknowledge the SAIF, IIT, Madras, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5621).

References

- Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Lan, P., Chen, W. N., Xiao, G. K., Sun, P. H. & Chen, W. M. (2010). Bioorg. Med. Chem. Lett. 20, 6764–6772.
- Raparti, V., Chitre, T., Bothara, K., Kumar, V., Dangre, S., Khachane, C., Gore, S. & Deshmane, B. (2009). *Eur. J. Med. Chem.* **44**, 3954–3960.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Yang, L.-L., Zheng, R.-L., Li, G.-B., Sun, Q.-Z. & Xie, Y.-M. (2011). Acta Cryst. E67, 0754.

supplementary materials

Acta Cryst. (2011). E67, o2500 [doi:10.1107/S1600536811034519]

2,4-Diiodo-6-{[4-(morpholin-4-yl)phenyl]iminomethyl}phenol

K. Manvizhi, G. Chakkaravarthi, G. Anbalagan and G. Rajagopal

Comment

Morpholine derivatives possess anticancer and antimicrobial (Lan *et al.*, 2010; Raparti *et al.*, 2009) activities. In the title compound, (I) (Fig. 1), The bond lengths C=N [1.282 (6)Å], C—I [C1—I1 = 2.092 (4) and C5—I2 = 2.097 (4) Å] are comparable with the literature values and the bond lengths of the morpholine ring are agree well with a reported related structure (Yang *et al.*, 2011).

The mean planes of two benzene rings (C8–C13) and (C1–C6) are oriented at an angle of 2.57 (15)°. The morpholine ring adopts a chair conformation [Puckering parameters are Q = 0.544 (6)Å, θ = 170.8 (5)° and φ = 180 (4)° (Cremer & Pople, 1975) for the ring (O1/C15/C14/N2/C17/C16)].

The molecular structure is stabilized by O—H···N hydrogen bonding and the crystal packing exhibit weak intermolecular C—H···O (Fig. 2 and Table 1) and π – π [Cg2···Cg3(-x, -y, -z) distance of 3.663 (3)Å; Cg2···Cg3(-x, 1 - y, -z) distance of 4.074 (3)Å] interactions.

Experimental

An ethanolic solution (20 ml) of 4-(4-aminophenyl)morpholine (10 mmol) was magnetically stirred in a round bottom flask followed by drop wise addition of ethanolic solution of 3,5-diiodosalicylaldehyde (10 mmol). The reaction mixture was then refluxed for 3 h and upon cooling to 273 K, a red crystalline solid precipitates from the mixture. The solid which is separated out was filtered washed with ice cold ethanol and dried in vaccuo over anhydrous CaCl₂. Single crystals suitable for the X-ray diffraction were obtained by slow evaporation of a solution of the title compound in methanol at room temperature. m.p. 443 K.

Refinement

All H atoms were positioned geometrically with C—H = 0.93-0.97 Å and O—H = 0.82 Å and allowed to ride on their parent atoms, with $U_{iso}(H) = 1.5Ueq(O)$ and 1.2Ueq(C).

Figures

Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.

Fig. 2. The packing of the title compound, viewed down the c axis. Intermolecular hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

2,4-Diiodo-6-{[4-(morpholin-4-yl)phenyl]iminomethyl}phenol

Crystal data

$C_{17}H_{16}I_2N_2O_2$	F(000) = 2032
$M_r = 534.12$	$D_{\rm x} = 1.945 {\rm ~Mg~m^{-3}}$
Monoclinic, C2/c	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 6743 reflections
<i>a</i> = 26.4133 (16) Å	$\theta = 2.7 - 35.4^{\circ}$
b = 7.6598 (4) Å	$\mu = 3.46 \text{ mm}^{-1}$
c = 18.0332 (11) Å	T = 295 K
$\beta = 91.417 (2)^{\circ}$	Block, colourless
$V = 3647.4 (4) \text{ Å}^3$	$0.26 \times 0.20 \times 0.20 \text{ mm}$
Z = 8	

Data collection

Bruker Kappa APEXII diffractometer	7647 independent reflections
Radiation source: fine-focus sealed tube	4855 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.023$
ω and ϕ scans	$\theta_{\text{max}} = 35.9^\circ, \ \theta_{\text{min}} = 2.3^\circ$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996)	$h = -42 \rightarrow 42$
$T_{\min} = 0.467, T_{\max} = 0.545$	$k = -5 \rightarrow 12$
17839 measured reflections	$l = -29 \rightarrow 27$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.056$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.113$	H-atom parameters constrained
<i>S</i> = 1.16	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0134P)^{2} + 27.6528P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
7647 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
208 parameters	$\Delta \rho_{max} = 1.22 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -1.72 \text{ e } \text{\AA}^{-3}$

map

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
I1	0.198728 (14)	-0.04313 (7)	0.01153 (2)	0.06368 (14)
I2	0.097444 (12)	-0.01689 (5)	0.305807 (16)	0.04538 (10)

01	0.05000 (1.4)	0 (100 (0)	0.0505 (0)	0.0(45 (11)
01	-0.25208 (14)	0.6183 (6)	-0.2595 (3)	0.0645 (11)
02	0.09297 (14)	0.1239 (6)	-0.03377 (17)	0.0567 (10)
H2	0.0683	0.1836	-0.0453	0.085*
N1	0.00453 (14)	0.2516 (5)	-0.0214 (2)	0.0399 (9)
N2	-0.16015 (14)	0.5632 (5)	-0.1763 (2)	0.0425 (9)
C1	0.13595 (16)	0.0208 (6)	0.0746 (2)	0.0369 (9)
C2	0.09350 (17)	0.0948 (6)	0.0387 (2)	0.0373 (9)
C3	0.05152 (15)	0.1370 (6)	0.0821 (2)	0.0335 (9)
C4	0.05340 (16)	0.1049 (6)	0.1581 (2)	0.0361 (9)
H4	0.0257	0.1332	0.1867	0.043*
C5	0.09549 (15)	0.0320 (6)	0.1913 (2)	0.0329 (9)
C6	0.13743 (15)	-0.0108 (6)	0.1495 (2)	0.0337 (9)
Н6	0.1660	-0.0601	0.1721	0.040*
C7	0.00713 (17)	0.2167 (6)	0.0481 (3)	0.0395 (10)
H7	-0.0203	0.2434	0.0775	0.047*
C8	-0.03754 (17)	0.3331 (6)	-0.0573 (3)	0.0396 (10)
C9	-0.03566 (18)	0.3557 (7)	-0.1329 (3)	0.0450 (11)
Н9	-0.0070	0.3202	-0.1577	0.054*
C10	-0.07575 (19)	0.4305 (7)	-0.1727 (3)	0.0462 (11)
H10	-0.0735	0.4440	-0.2238	0.055*
C11	-0.11929 (17)	0.4858 (6)	-0.1375 (3)	0.0402 (10)
C12	-0.12009 (19)	0.4645 (8)	-0.0609 (3)	0.0505 (13)
H12	-0.1483	0.5023	-0.0355	0.061*
C13	-0.0805 (2)	0.3894 (8)	-0.0215 (3)	0.0520 (13)
H13	-0.0825	0.3762	0.0296	0.062*
C14	-0.1627 (2)	0.5380 (8)	-0.2559 (3)	0.0591 (15)
H14A	-0.1692	0.4159	-0.2668	0.071*
H14B	-0.1305	0.5691	-0.2768	0.071*
C15	-0.2046 (2)	0.6497 (9)	-0.2912 (4)	0.0682 (18)
H15A	-0.1959	0.7720	-0.2852	0.082*
H15B	-0.2069	0.6250	-0.3440	0.082*
C16	-0.2480 (2)	0.6635 (9)	-0.1835 (4)	0.0655 (17)
H16A	-0.2807	0.6489	-0.1611	0.079*
H16B	-0.2385	0.7855	-0.1791	0.079*
C17	-0.20944 (19)	0.5535 (8)	-0.1423 (3)	0.0573 (15)
H17A	-0.2064	0.5932	-0.0913	0.069*
H17B	-0.2208	0.4331	-0.1419	0.069*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.04506 (19)	0.1026 (4)	0.04403 (18)	0.0186 (2)	0.01452 (14)	-0.0004 (2)
I2	0.04006 (15)	0.0669 (2)	0.02930 (13)	0.00174 (15)	0.00371 (10)	0.00684 (14)
01	0.0412 (19)	0.067 (3)	0.084 (3)	-0.0058 (19)	-0.0255 (19)	0.011 (2)
O2	0.059 (2)	0.086 (3)	0.0255 (15)	0.027 (2)	0.0000 (14)	-0.0027 (17)
N1	0.0382 (19)	0.044 (2)	0.0372 (19)	0.0059 (17)	-0.0102 (16)	-0.0042 (17)
N2	0.0365 (19)	0.037 (2)	0.053 (2)	-0.0016 (16)	-0.0128 (17)	0.0076 (18)
C1	0.0314 (19)	0.050 (3)	0.0293 (18)	0.0038 (19)	0.0014 (15)	-0.0053 (19)

supplementary materials

C2	0.039 (2)	0.045 (3)	0.0277 (19)	0.000 (2)	-0.0013 (16)	-0.0041 (18)
C3	0.0301 (19)	0.038 (2)	0.0325 (19)	0.0010 (17)	-0.0032 (16)	-0.0035 (17)
C4	0.0287 (19)	0.044 (3)	0.035 (2)	0.0003 (18)	0.0036 (16)	0.0006 (19)
C5	0.0327 (19)	0.041 (2)	0.0249 (16)	-0.0051 (18)	0.0025 (14)	0.0026 (17)
C6	0.0268 (17)	0.043 (2)	0.0316 (18)	0.0002 (17)	-0.0023 (14)	0.0017 (18)
C7	0.031 (2)	0.043 (3)	0.044 (2)	0.0021 (19)	-0.0029 (18)	-0.004 (2)
C8	0.035 (2)	0.039 (2)	0.044 (2)	0.0025 (19)	-0.0085 (18)	-0.001 (2)
C9	0.039 (2)	0.051 (3)	0.046 (3)	0.008 (2)	-0.004 (2)	-0.002 (2)
C10	0.044 (3)	0.052 (3)	0.042 (2)	0.007 (2)	-0.008 (2)	0.000(2)
C11	0.034 (2)	0.034 (2)	0.052 (3)	-0.0049 (18)	-0.0112 (19)	0.004 (2)
C12	0.037 (2)	0.062 (3)	0.052 (3)	0.010 (2)	-0.002 (2)	0.004 (3)
C13	0.046 (3)	0.069 (4)	0.042 (3)	0.010 (3)	-0.002 (2)	0.006 (3)
C14	0.049 (3)	0.067 (4)	0.060 (3)	0.000 (3)	-0.016 (3)	0.014 (3)
C15	0.056 (3)	0.075 (4)	0.072 (4)	0.003 (3)	-0.024 (3)	0.019 (3)
C16	0.039 (3)	0.071 (4)	0.085 (5)	0.005 (3)	-0.017 (3)	0.012 (4)
C17	0.037 (2)	0.062 (4)	0.073 (4)	0.003 (2)	-0.010 (2)	0.011 (3)

Geometric parameters (Å, °)

I1—C1	2.092 (4)	C8—C9	1.376 (7)
I2—C5	2.097 (4)	C8—C13	1.387 (7)
O1—C15	1.412 (7)	C9—C10	1.389 (6)
O1-C16	1.415 (8)	С9—Н9	0.9300
O2—C2	1.325 (5)	C10—C11	1.393 (7)
O2—H2	0.8200	C10—H10	0.9300
N1—C7	1.282 (6)	C11—C12	1.392 (7)
N1—C8	1.417 (6)	C12—C13	1.376 (7)
N2-C11	1.403 (6)	C12—H12	0.9300
N2-C14	1.447 (7)	C13—H13	0.9300
N2—C17	1.455 (7)	C14—C15	1.525 (7)
C1—C6	1.372 (6)	C14—H14A	0.9700
C1—C2	1.401 (6)	C14—H14B	0.9700
С2—С3	1.411 (6)	C15—H15A	0.9700
C3—C4	1.393 (6)	C15—H15B	0.9700
С3—С7	1.445 (6)	C16—C17	1.504 (7)
C4—C5	1.369 (6)	C16—H16A	0.9700
C4—H4	0.9300	C16—H16B	0.9700
С5—С6	1.394 (6)	C17—H17A	0.9700
С6—Н6	0.9300	C17—H17B	0.9700
С7—Н7	0.9300		
C15—O1—C16	107.7 (4)	C11—C10—H10	119.4
C2—O2—H2	109.5	C12—C11—C10	116.7 (4)
C7—N1—C8	124.1 (4)	C12—C11—N2	120.9 (5)
C11—N2—C14	117.0 (4)	C10—C11—N2	122.3 (5)
C11—N2—C17	117.0 (4)	C13—C12—C11	122.1 (5)
C14—N2—C17	113.0 (4)	C13—C12—H12	118.9
C6—C1—C2	122.0 (4)	C11—C12—H12	118.9
C6-C1-I1	119.4 (3)	C12—C13—C8	120.7 (5)
C2—C1—I1	118.6 (3)	C12—C13—H13	119.7

O2—C2—C1	120.9 (4)	C8—C13—H13	119.7
O2—C2—C3	121.3 (4)	N2-C14-C15	110.8 (5)
C1 - C2 - C3	1178(4)	N2-C14-H14A	109 5
C4-C3-C2	119.8 (4)	C15-C14-H14A	109.5
C4-C3-C7	120 1 (4)	N2-C14-H14B	109.5
$C^{2}-C^{3}-C^{7}$	120.1(1) 120.2(4)	C15-C14-H14B	109.5
$C_{2} = C_{3} = C_{7}$	120.2(1) 120.8(4)	$H_{14} - C_{14} + H_{14} B$	109.5
C_{2}^{-}	110.6	01 - C15 - C14	1122(5)
$C_3 = C_4 = H_4$	119.6	01 - 015 - 014	100.2
C_{3}	119.0	C14 C15 H15A	109.2
$C_{4} = C_{5} = C_{0}$	120.3(4)	01 C15 U15P	109.2
$C_{4} = C_{5} = I_{2}$	120.2(3)		109.2
C6-C5-12	119.3 (3)		109.2
CI = C6 = C5	119.2 (4)	HISA—CIS—HISB	107.9
C1—C6—H6	120.4	01	112.1 (5)
С5—С6—Н6	120.4	01—C16—H16A	109.2
N1—C7—C3	121.7 (4)	C17—C16—H16A	109.2
N1—C7—H7	119.1	O1—C16—H16B	109.2
С3—С7—Н7	119.1	C17—C16—H16B	109.2
C9—C8—C13	118.1 (4)	H16A—C16—H16B	107.9
C9—C8—N1	117.4 (4)	N2-C17-C16	111.4 (5)
C13—C8—N1	124.4 (4)	N2-C17-H17A	109.3
C8—C9—C10	121.3 (5)	С16—С17—Н17А	109.3
С8—С9—Н9	119.4	N2-C17-H17B	109.3
С10—С9—Н9	119.4	С16—С17—Н17В	109.3
C9—C10—C11	121.1 (5)	H17A—C17—H17B	108.0
C9—C10—H10	119.4		
C6—C1—C2—O2	-179.9 (5)	N1—C8—C9—C10	178.4 (5)
I1—C1—C2—O2	0.0 (7)	C8—C9—C10—C11	0.1 (8)
C6—C1—C2—C3	0.1 (7)	C9-C10-C11-C12	0.9 (8)
I1—C1—C2—C3	180.0 (3)	C9-C10-C11-N2	179.4 (5)
O2—C2—C3—C4	-179.9 (5)	C14—N2—C11—C12	-163.6(5)
C1—C2—C3—C4	0.1 (7)	C17—N2—C11—C12	-24.8 (7)
O2—C2—C3—C7	-1.2 (7)	C14—N2—C11—C10	17.9 (7)
C1—C2—C3—C7	178.8 (4)	C17—N2—C11—C10	156.7 (5)
C2-C3-C4-C5	-0.2(7)	C10-C11-C12-C13	-1.3(8)
C7-C3-C4-C5	-1789(4)	N_{2} C11 - C12 - C13	-1799(5)
$C_{3} - C_{4} - C_{5} - C_{6}$	0.2.(7)	$C_{11} - C_{12} - C_{13} - C_{8}$	07(9)
C_{3} C_{4} C_{5} I_{2}	-1796(3)	C9 - C8 - C13 - C12	0.4(8)
$C_{2}^{2} - C_{1}^{1} - C_{6}^{2} - C_{5}^{5}$	-0.1(7)	N1 - C8 - C13 - C12	-178.8(5)
	180.0(3)	$C_{11} = N_2 = C_{14} = C_{15}$	-1721(5)
$C_{4} = C_{5} = C_{6} = C_{1}$	-0.1(7)	C17 - N2 - C14 - C15	172.1(5)
12 - 05 - 06 - 01	179.8 (3)	$C_{16} = 01 = C_{15} = C_{14}$	-1.5(0)
12 - 03 - 00 - 01 C8_N1_C7_C3	-1785(4)	$N_{-14-15-01}$	-55 3 (7)
$C_{4} = C_{2} = C_{7} = C_{3}$	179 5 (5)	112 - 014 - 015 - 01	-61.0 (6)
$C_{+} = C_{2} = C_{1} = N_{1}$	-0.2(7)	$C_{13} = 01 = 010 = 017$	01.9(0) 171.5(5)
$C_2 = C_3 = C_1 = I_N I$	-0.2(7)	$C_{11} = N_2 = C_{17} = C_{16}$	1/1.3(3)
$C_{1} = N_{1} = C_{2} = C_{1}$	-1/.4(3)	$C_{14} = N_{2} = C_{17} = C_{10}$	-48.1 (/)
$C_1 - N_1 - C_0 - C_{10}$	1./(8)	01—010—01/—N2	33.7(7)
C13-C8-C9-C10	-0.8 (8)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!- \mathbf{H} \cdots \!\!\!-\!$
O2—H2…N1	0.82	1.82	2.548 (5)	146
C6—H6···O1 ⁱ	0.93	2.50	3.413 (5)	166
Symmetry codes: (i) $x+1/2$, $-y+1/2$, $z+1/2$.				

Fig. 1

